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Abstract

At the preliminary design stage of a wing structure, an efficient simulation, one needing little

computation but yielding adequately accurate results for various response quantities, is essential in

the search of optimal design in a vast design space. In the present paper, methods of using

sensitivities up to 2"d order, and direct application of neural networks are explored. The example

problem is how to decide the natural frequencies of a wing given the shape variables of the

structure. It is shown that when sensitivities cannot be obtained analytically, the finite difference

approach is usually more reliable than a semi-analytical approach provided an appropriate step size

is used. The use of second order sensitivities is proved of being able to yield much better results

than the case where only the first order sensitivities are used. When neural networks are trained to

relate the wing natural frequencies to the shape variables, a negligible computation effort is needed

to accurately determine the natural frequencies of a new design.
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Introduction

The modal response of wing structures is very important for assessing their dynamic response

including dynamic aeroelastic instabilities. Moreover, in a recent study _ an efficient structural

optimization approach was developed using structural modes to represent the static aeroelastic wing

response (both displacements and stresses).

Sensitivity techniques are frequently used in structural design practices for searching the

optimal solutions near a baseline design 2.3 . The design parameters for wing structure include

sizing-type variables (skin thickness, spar or rib sectional area etc.), shape variables (the plan

surface dimensions and ratios), and topological variables (total spar or rib number, wing topology

arrangements etc.). Sensitivities to the shape variables are extremely important because of the

nonlinear dependence of stiffness and mass terms on the shape design variables as compared to the

linear dependence on the sizing-type design variables.

Kapania and coworkers have addressed the first order shape sensitivities of the modal response,

divergence and flutter speed, and divergence dynamic pressure of laminated, box-wing or general

trapezoidal wing composed of skins, spars and ribs using various approaches of determining the

response sensitivities 4-t0.

In the present paper, the natural frequencies of general trapezoidal wing structures are to be

approximated using shape sensitivities up to the 2no order, and different approaches of computing

the derivatives are investigated. The baseline design and shape sensitivities are calculated based on

an equivalent plate-model analysis (EPA) method developed by Kapania and Liu _. For

comparison, an efficient method that employs the artificial neural networks to relate the natural

frequencies of a wing to its shape variables is also established. An example of a 4 3 full factorial



experimentaldesign,i.e.,4 levelsin 3 variables,is treatedby thesemethodsto displaytheir

respectivemerits.

ShaDe Sensitivities

For a trapezoidal wing, there are four major independent shape variables: 1) the sweep angle A,

2) the aspect ratioa , 3) the taper ratio z, and 4) the plan area A. All the other dimensions of the

wing plate configuration can be calculated using these parameters as follows:

s = ,f_, a = 2_/a(1 + r),b = 2s/a(1 + r) (1)

where s is the length of semi-span, a and b are the chord-length at wing tip and root

respectively, as shown in Fig. 1.

The sensitivities for the design parameters at a baseline design point indicate trends in the

response of the baseline design if the parameters are perturbed. Usually, only the first order

derivatives are used:

. , 2. . _r_'Of0. i "
f(x',x z,...,x )= f(Xo,X o, ..,xo)+ _= -_x -Xo) (2)

where _)f0 _ _._f is the sensitivity at the baseline point with respect to the i-th design
Ox i _x "1_4,_ ,...,x_)

parameter. For a more accurate approximation, we can use higher-order derivatives in the Taylor's

expression:

n.. , 2 'o,X... "f(x',x 2, ",x")= f(Xo,Xo," f(x _, ,x o)
i=1

÷1+3 (x' x;) ' _- f(Xo, Xo,'", xo)
i=1

(3)



where besides the first order derivatives, second order derivatives --

used.

_)2f° (i,j= l,...n) are also
3xiOx i

Equivalent Plate Analysis (EPA) of Trapezoidal Wing Structures

In Kapania and Liu _, a general method is developed to analyze trapezoidal wing structures

composed of skins, spars and ribs. The method is based on the Reissner-Mindlin model, a First-

Order Shear Deformation Theory (FSDT). An equivalent plate model is based on the hypothesis

that the original complex built-up structures behave like a plate, a simplification to reduce the

computational effort to obtain the free vibration and static responses. Compared with the methods

presented earlier in Kapania and Lovejoy t2and Cortial 1_, the formulation in Kapania and Liu tt

entails no limitation with respect to the wing thickness distribution. As shown in Ref. 11, the

method shows a good performance for both static and vibration problems in comparison with the

FEA. Free vibration and static response are obtained using the Ritz method. The advantages of

using Ritz method are: (i) the ease of carrying out formulation and computer realization, and (ii) the

global nature of the solution, important for accurate determination of various stress components.

Due to its efficiency in determining the natural frequencies and mode shapes of wings, the

Equivalent Plate Analysis (EPA) mentioned above can be used to investigate the variation of modal

response, that is, to evaluate the sensitivities of the natural frequencies with respect to trapezoidal

wing structures shape changes. For determining the response of the baseline design, the EPA can

be used, or the FEA employing a commercial package such as MSC/NASTRAN can be used for

better accuracy.
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A key problem that needs to be addressed before this evaluation can be made is mode tracking.

The natural frequencies given by an ordinary eigenvalue solver are usually ranked by magnitude

but not by the modal content. As design variables are perturbed, frequencies drift and mode

crossing may occur. An algorithm for mode tracking is needed to maintain the correspondence

between eigenpairs of the baseline and the perturbed design. Several methods for such purpose

have been given by Eldred et al for self-adjoint _4 and nonself-adjoint 15 eigenvalue problems.

In the present study, a simple yet effective method is used. In this method, any ordinary

eigenvalue solver can be used, and the modes of the baseline structure are chosen as the

benchmarks. By using the modal assurance criterion (MAC) defined as

T --

({¢j} {¢i})2

= (4)
MACj, ({¢j }T{¢j IT{if,})

where {4j } and {¢i } are the eigenvector for the perturbed and the baseline design respectively, if

MAC j, = max(MACti ), we say that the j -th mode of the perturbed design corresponds to the i -th
l

mode of the baseline structure.

Aporoaches to Sensitivity Evaluation

There can be three kinds of approach for obtaining sensitivity derivatives: the finite difference

approach, the analytical approach, and the semi-analytical approaches. The finite difference

approach is very simple to formulate and implement, but is numerically inefficient and is sensitive

to the step-size used. A too-large step size usually causes significant truncation errors and a too-

small step size may lead to large round-off errors. As a result, the more elegant and accurate

analytical approach is used if it does not involve complex mathematical derivation. But for most

practical problems, the derivation of analytical derivatives is too formidable to handle manually.



ThebasicideabehindtheAutomaticDifferentiation(AD) is to let a computer to perform such

extensive tasks. The advantage of AD is to avoid truncation errors. The method has found

applications in sensitivity evaluation 9j0. For the basic theory of AD one can consult Ref. 16, and

for the state-of-the-art of AD one can refer to Ref. 17. If an approach uses both analytical and

finite-difference solutions to obtain the derivative, then it can be called a semi-analytical one.

The finite difference approaches can be constructed using the following formulas:

f'(x) f (x + Ax) - f (x- Ax)= FO(Ax 2) (5)
2Ax

f'(x) = f(x + Ax) - 2f(x) + f(x - Ax) + O(Ax 2 ) (6)
Ax 2

where

Ax = e. x (7)

in which E is the relative step size, but herein it is simply called the step size. Eq. (5) can be

a2f° (i _ j)
applied twice for evaluating the mixed second order derivatives such as axia x j

The analytical approaches for shape sensitivities of modal response can be based on the

following equations

where

a2, r(a[K] a[M] )
(8)

(2,.-2j) [. _ _,,---_ ¢_,},j*:i

l r[a[Ml)

(10)
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here 6 is the shape variable, 2 i and {¢i } are the i -th eigenvalue and eigenvetor, and (¢, } is mass-

normalized such that {¢i }r [M]{¢i } -- I. Equations (8) and (9) were first derived by Wittrick 18 and

Fox and Kapoor _9 respectively. One can find more on this topic in Ref. 20.

a[K] a[M]
The major difficulty of applying Eqs. (8) and (9) lies in the calculation of -- and --a6 a6

air]
For instance, consider _. According to Ref. 11, the stiffness matrix [K] is formulated as ana6

integral

v (11)

where only the inner part [G] = I_ =[T] r [D][T]Jidz is a function of the shape variables, and the

Gaussian quadrature is used to obtain the integration on _ and r/. Therefore,

, , ¢at<]clae - L ' (12)

0[G]

in which _ can either be determined analytically or numerically.

Often people make use of the advantages of both the finite difference and analytical approaches

in different stages of obtaining some complicated sensitivities. While trying to use the analytical

approach as much as possible, in other parts of the process the finite difference is used, as in the

cases of Refs. 8 and 10. This kind of approach is usually called semi-analytical.

In summary, there are three approaches to calculate the first order modal sensitivities:



(i) analytical approach: Eqs.(8)-(10) are used, and
3[K] b[MI

and are determined
36 36

analytically.

3[K]

(ii) semi-analytical approach: Sensitivities _'6
and m

/)[M] .
m Eqs.(8)-(lO) are determined

_6

numerically, that is, for the case of -- , Eq. (12) is used where _-_ is calculated using a finite

difference scheme.

(iii) finite difference approach: -- are determined using Eq. (5) directly.

For the second order sensitivities, there can still be three approaches as specified above. While

the formulation for the analytical approaches is becoming more complicated, a scheme as simple as

Eq. (6) can be used for the finite difference approach.

Application of Sensitivity Technique (ST) in Multi-variable Optimization

In a multi-variable case, the following formulation is used instead of Eq. (3):

R_(p)=R(p_)+(p_pi)r 3R 1[ _ ]2 (13)

where p = (v', v 2 ,..., v" )r is an arbitrary point in the design space, Pi = (v I , v_,..., vn,)r is the i -

th node point in the design space, R i (p) is the response at p estimated by using the response and

its sensitivities at Pi, R(pi ) is the response at the i -th node point p_, and

• _ °°°_ .

3p, _' 3v2' _v°
P=Pi



Once there are enough estimates for the response at p using Eq. (13), a more accurate

evaluation of response at p can be determined using the following weighting procedure involving

the so-called exponentially decaying influence function 2_.

R(p) = _ w i (p)R i (p) (14)
i

where i ranges through the N w design points which are closest to p, and the weight coefficients

w, (p) are determined such that its sum is unity:

exp(-Clp - p, ) (15)
w, (p) = ',','_exp(-C p - Pi )

i

in which C is an empirical constant, and the distance between p and Pi is defined as

tP Pi = VJ- ( -v/) 2 . It can be seen that _.wi(p)=l.
i

Application of Neural Networks (NN)

Artificial Neural Networks (ANN), or simply Neural Networks (NN) are computational systems

inspired by the biological brain in their structure, data processing and restoring method, and

learning ability. More specifically, a neural network is defined as a massively parallel distributed

processor that has a natural propensity for storing experiential knowledge and making it available

for future use by resembling the brain in two aspects: (i) Knowledge is acquired by the network

through a learning process; (ii) Inter-neuron connection strengths known as synaptic weights (or

simply weights) are used to store the knowledge 22.

The NN has the following properties: (i) Many of its kind are universal approximators, in the

sense that, given a dimension (number of hidden layers and neurons of each layer) large enough,

any continuous mapping can be realized; Therefore, (ii) a NN provides a general mechanism for

\
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building modelsfromdata,or gives a general means to set up input-output mapping (iii) The input

and output relationship of NN can be highly nonlinear; (iv) A NN is parallel in nature, and it can

make computation fast when executed in a parallel computer, though NN can be simulated

in ordinary computers in a sequential manner.

Major steps of utilizing NN include: (i) specifying the topology or the structural parameters

(number of layers, number of neurons in each layer, etc.) of the NN, (ii) training of the NN,

corresponding to the learning process of the brain, (iii) simulation, corresponding to the recalling

function of the brain.

In the present work MATLAB Neural Network Toolbox was used. Ref. 23 contains a summary

of applications of NN in structural engineering and details of how to make use of MATLAB Neural

Network Toolbox.

Generally speaking, there can be two directions to use NN for the efficient simulation of the

performances of wing structures as in the following:

(a) Direct Application

In this case, the input layer includes all the design variables of interest (for instance, the four

shape parameters of the wing plan-form). The output layer gives the desired structural

responses, such as natural frequencies etc. The EPA is being used as the training data generator,

though if necessary, results obtained using a FEM can also be used as the training data.

Preparation of training data is very important, and the training algorithm used also greatly

impacts the training process 23. Caution must be exerted in specifying the network parameters

and training criterion so that the results of the trained network would not oscillate around the

training data. The direct application is what we do in this paper.
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(b) Indirect Application

In this approach, the aim is to develop a way of incorporating NN into the application of the

equivalent plate model analysis (EPA) of complex wing structures, other than just making use

of results generated by EPA as the training data base. Note that in the EPA of a complex wing,

computational efforts lies mainly in performing the various integrals for the inner-structural

components of the wing, i.e. the spars and the ribs. If an anisotropic material can be found to

replace this structure such that the new composite wing has similar global properties as the

original one, then the EPA can be performed more efficiently. Determining the adequate

material properties of the equivalent anisotropic material is the major obstacle here. The role of

NN will be in relating the material properties to all kinds of wing design parameters, when there

exists enough database for training. Use of NN to determine properties of an equivalent

anisotropic material that will accurately represent the wing is being studied at present in another

effort.

Examples and Discussion

(a) Results on sensitivity evaluation

Particulars of the baseline wing structure are as follows: the sweep angle A = 30 ° , the aspect

ratio _ = 3.5, the taper ratio z = 0.5, the plan area A = 5832in 2 . The wing sections are generated

using the Karman-Trefftz transformation (Ref. 24) and has a thickness-chord ratio of 0.15 at the

wing root and 0.06 at the tip. The skin thickness to =. 118in. There are 4 spars and 10 ribs

distributed uniformly under the skins. Particulars of the spars and ribs are the same: the cap height

h t =. 197in, the cap width l_ -.373in, and the web thickness t_ = .059in. There is only one
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material used with mass density p = 2.526 x lO-_lb . sec2/in 4 , Young's modulus

E = 1.025 × 107 lb/in 2, and Poisson's ratio v = 0.3. The wing is clamped at the root.

An example of using EPA to calculate the natural frequencies with regard to shape variables

while tracking modes by evaluating MACs is provided in Fig. 2, where the variation of the natural

frequencies of the first 10 modes w.r.t, the aspect ratio are shown. It can be seen that for most cases

the intersection of natural frequencies has been treated well, and only in a few cases the frequency

variations near the intersection point seem to have a minor problem, probably due to some kind of

interaction between the two modes. If an eigenvalue solver that can work more accurately with

repeated eigenvalues is made use of, the situation can be improved.

The effect of step size on the finite difference approach for sensitivities was investigated for all

the four shape variables. The case with the taper ratio is shown in Fig. 3. From all the cases, it is

seen that for the best results for both the 1st and 2nd order sensitivities, the step size E defined in

and for fairly accurate results £ can be betweenEq. (7), should be between 0.005-0.015

0.0017-0.045.

_)[G]
To evaluate -- analytically proved to be formidable except only in some simplified cases.

In order to compare the sensitivities using the analytical, semi-analytical and finite difference

approach, a special case of the above baseline wing with a constant thickness was considered so

that the analytical derivation of /)[G...._.__]in Eq. (12) is not formidable. When E is specified as 0.005,
_6

it is found that for the 1st order sensitivities to the four shape variables (A, a, z, and A ) the relative

difference (averaged for the first 10 modes) between the finite difference and analytical approach is

0.003%, 0.003%, 0.002% and 0.003% respectively. The relative difference between the semi-

analytical and analytical approach is 0.14%, 0.04%, 0.02% and 0.01% respectively. Therefore in
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thiscasethefinite differenceapproachis moreaccuratethanthesemi-analyticalone,howeverboth

theapproachesyield quiteaccurateresults.

For theoriginalbaselinewing, sincethederivationof theanalyticalderivativesfor b[ G ] is
b6

too formidable, only the comparison of the I st order sensitivities using the finite difference and the

semi-analytical approach was made. It is found in this case the sensitivities to the aspect ratio a,

taper ratio z and plan area A using both approaches are quite close, the average difference for the

first 10 modes being in the range of 0.5~1.4%. As an example, the 2 nd natural frequency w.r.t. A is

shown in Fig. 4, where it can be seen that the 1st order sensitivities using the finite difference and

the semi-analytical approach almost coincide with each other. On the other hand, sensitivities to the

sweep angle A using the two approaches have had some quite large relative differences especially

for modes whose sensitivity to A is small. One such example, the 3 ra natural frequency w.r.t. A, is

shown in Fig. 5, where attention should be paid to the scale for the vertical coordinate to see how

small the sensitivity to A really is.

It is observed in Fig. 5 that, as in the case of the constant-thickness wing, the finite difference

approach has a better performance than the semi-analytical one. In fact, in some extreme cases, the

linear approximation using the first order sensitivity obtained using the semi-analytical approach is

not at all tangent to the actual variation at the baseline point. This is not the case for that using the

finite difference approach, if the step size chosen is not too large. Moreover, the computation

efforts for both the approaches are at the same level since in both cases calculation of the stiffness

and mass matrices at the baseline design and two perturbed designs should be performed.

It is obvious from observing Fig. 4 and 5 that the approximation using sensitivities up to the

second order has much improved the results compared with the case where only the first order

sensitivity is used. Similarly it has been shown in Haftka and Gurdal 25 that, for the stress-ratio in a
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three-bartruss,thequadraticapproximationis muchmoreaccuratethanthelinearone.Also it can

beseenthatthesecondordersensitivitiesusingthefinite differenceschemeof Eq. (6) arefairly

accurate,at leastfor thepurposeof engineeringapplication.Anotheradvantageof thisschemeis

that it sharestheperturbationdatawith thefirst ordersensitivityschemeEq. (5), thereforeits

evaluationhasno increasein thecomputationaleffort atall.

Usingthefinite differenceapproachbasedonEq.(5) themixedsecondordersensitivities

02f° (i ¢ j) can be readily determined. As an example, the mixed second order sensitivity on r
OxiOxj

and A for the first five natural frequencies were calculated, and the results are listed as follows:

0.0099, 0.0153, 0.0353, 0.0494 and 0.0156.

(b) Application of Sensitivity Technique (ST) and Neural Networks (NN)

For a trapezoidal wing, there are four major independent shape variables, i.e. the sweep angle

A, the aspect ratio a , the taper ratio z, and the plan area A. As an example, a 43 full factorial

experimental design with 4 levels in A,a, and z respectively, was used. Particulars of the levels

of every variable are as follows: A = [0 ° ,10°,20 ° ,30°], a = [1.0,1.5,2.0,2.5], and

= [0.3,0.4,0.5,0.6]. The plan area is chosen to be a constant: A = 3500in 2 . The other particulars

are the same as in (a).

The natural frequencies of the wing structure at the 64 node points in the design space were

calculated using EPA, and the 1st and 2 nd order sensitivities at these points were also determined by

finite difference using EPA 3. For each mode, a feed-forward neural network with a structure of

3 x 15 x 10 x l, i.e. 3 inputs, 15 neurons in the first hidden layer, 10 neurons in the second hidden

layer, and 1 output, is trained using the MATLAB NN Toolbox function trainlm that trains feed-

forward network with the Levenberg-Marquardt algorithm 23. There are 64 sets of training data,
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which are non-dimensionalized before the training process. Once the networks are trained, the

input-output relationships can be readily retrieved by using the function simuff.

For the application of sensitivity technique, the major task is to evaluate the sensitivities, and to

generate responses at an arbitrary design point using Eqs. (13) and (14) does not need large amount

of CPU time. The constant C in Eq. (14) was specified to be 10, and N W= 10 was used.

Shown in Fig. 6 are the first 6 natural frequencies of 20 randomly chosen wing structures inside

the box defined in terms of lower and upper bounds on the design variables specified above. From

the figure it can be seen that both of the results given by NN and ST are in very good agreement

with the desired values (those given by the EPA) except for a few cases where there are some

differences. These cases might be caused by the unstable performance of the algorithm used for

extracting eigenvalues in the EPA near the mode-crossing points, as shall be shown in Fig 7 and 8.

In order to see the effects of sensitivity order, a randomly chosen path inside the design space box

is defined as

v j = vd(l - a j) + via j, j = 1,2,31

v _ =A,v 2 =ot, v 3 =r, I (16)
a j =sn',nj =rj/(1- rj).

" _ =0 °, _=30 ° etc.,where v_ and v/ are lower and upper bounds of variable v j , for instance, v 0 v I

se [0,1] is the range of a shape variable, and _ (j = 1,2,3) are randomly determined values between

0 and 1. Results of natural frequencies of the first 4 modes for wing structures defined by points

along a path with n _=0.945, n 2 =8.200, and n 3=3.203 are shown in Fig. 7, where only the I st order

sensitivities were used, and in Fig. 8, where sensitivities up to the 2"d order were used. It can be

seen that when sensitivities up to the 2 _ order are used, results are effectively improved.
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Generallyspeaking,neuralnetworksandsensitivitytechniquecangiveequallygoodresults,

andtheformeruseslesstimethanthelatter.But bothmethods,oncetheNNs aretrainedor the

sensitivitiesareobtained,aremuchmoreefficient thantheEPA. For instance,theCPUtimes

consumedby theEPA, thesensitivitybasedmethodandtheNN basedmethodarein theratioof

55:1:0.06.

Theexampleusedabovehasonly threevariables.Fordesignproblemswith morevariables,the

methodof NN andSTcanstill beappliedin general,only attheexpenseof morecomputingtime.

We canexpectthatsimilarconclusionsto thoseobtainedabovestill applyto thesecases.Fora

designproblemwith very largenumberof variables,in combinationwith theNN or STmethod,

methodologiesto shrinkthedesignspace,suchasthereasonabledesignspaceapproachdescribed

in Ref. 26,canbeused.This canmakethesearchof optimaldesigneasierandatthesametime the

applicationof NN or STmoreaccurate,just asthecasein Ref.26wheretheresponsesurface

approximationwasusedto simulatehigh-fidelitymodels.Also for this kind of highdimensionality

designproblems,a full multi-levelfactorialexperimentaldesignis almostimpossibleto usehence

themethodsof eitherNN, or ST,orevenresponsesurfaceaxehardto applybecausethecostwould

betoo high.In suchacase,anincompleteblock statisticalexperimentaldesignusingtheD-optimal

criterion27.28canbeused,which,with muchreducednumberof designnodepoints,makesthe

applicationof NN or STpossible.

Conclusion

Modal response of general trapezoidal wing structures was investigated based on an equivalent

model analysis and sensitivity techniques. The variations of the natural frequencies w.r.t, shape

design variables need to be coordinated with the baseline mode shapes by mode tracking. The use
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of secondordersensitivitiesprovedtobeyieldingmuchbetterresultsthanthecasewhereonly first

ordersensitivitiesareused.Shapesensitivitiescanbeevaluatedusinganalytical,finite difference

andsemi-analyticalapproaches.Thepresentresearchshowsthatwhentheanalyticalsolutionis not

available,thefinite differenceapproachwouldbeabetterchoicethanthesemi-analyticalone

providedthestepsizeisproperlyspecified.

Neuralnetworkscanbe trainedto relatethenaturalfrequenciesof awing structureto its shape

variables.In this approachthemajoreffortsarein trainingthenetworks.Oncethenetworksare

trained,thereneedsanalmostnegligiblecomputationaleffort to obtainequallygoodresultsfor the

naturalfrequenciesfor anygivensetof thewing shapevariables.
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